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Abstract

Purpose — The purpose of this paper is to develop a novel unstructured simulation approach for
injection molding processes described by the Hele-Shaw model.

Design/methodology/approach — The scheme involves dual dynamic meshes with active and
inactive cells determined from an initial background pointset. The quasi-static pressure solution in
each timestep for this evolving unstructured mesh system is approximated using a control volume
finite element method formulation coupled to a corresponding modified volume of fluid method. The
flow is considered to be isothermal and non-Newtonian.

Findings — Supporting numerical tests and performance studies for polystyrene described by
Carreau, Cross, Ellis and Power-law fluid models are conducted. Results for the present method are
shown to be comparable to those from other methods for both Newtonian fluid and polystyrene fluid
injected in different mold geometries.

Research limitations/implications — With respect to the methodology, the background pointset
infers a mesh that is dynamically reconstructed here, and there are a number of efficiency issues and
improvements that would be relevant to industrial applications. For instance, one can use the pointset
to construct special bases and invoke a so-called “meshless” scheme using the basis. This would
require some interesting strategies to deal with the dynamic point enrichment of the moving front
that could benefit from the present front treatment strategy. There are also issues related to mass
conservation and fill-time errors that might be addressed by introducing suitable projections. The
general question of “rate of convergence” of these schemes requires analysis. Numerical results here
suggest first-order accuracy and are consistent with the approximations made, but theoretical results
are not available yet for these methods.

Originality/value — This novel unstructured simulation approach involves dual meshes with active
and inactive cells determined from an initial background pointset: local active dual patches are
constructed “on-the-fly” for each “active point” to form a dynamic virtual mesh of active elements that
evolves with the moving interface.
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application subclass. This strategy is useful in determining models that allow more
efficient numerical simulation and also have special analytic solutions for verification
purposes. In mold-injection simulations, model simplification arises from the flow
geometry which is characterized by a small flow thickness parameter due to the shape
of the mold. Applying perturbation theory and asymptotic analysis in terms of the
thickness parameter, together with the theory of lubrication leads to a quasi-steady 2D
modified Hele-Shaw system for pressure of a viscous fluid (Holm and Langtangen,
1999; Tucker, 1989). In the present work, the isothermal case for generalized viscosity
models is investigated during the mold filling process.

Several strategies have been developed to handle numerical simulation of such
moving boundary problems that make use of some form of background mesh or,
equivalently, of data structure (e.g. connectivity among nodes) in order to discretize the
governing equations via finite element, finite volume and other local discretization
methods (e.g. see Codina et al, 1994; Estacio and Mangiavacchi, 2007; Holm and
Langtangen, 1999; Jiang et al., 2007; Lewis et al., 1997; Zhou and Li, 2001; Zhou and
Turing, 2006). These include Eulerian, Lagrangian or other mixed Eulerian-
Lagrangian approaches (Estacio et al., 2008; Hirt et al., 1974; Lewis et al., 1997; Li et al.,
2005, 2008; Subbiah et al., 1989).

In the present work an underlying pointset is generated as a “background pointset for
the mold domain” and dual computational meshes are constructed on local patches
dynamically for control volume pressure solution (Baliga and Patankar, 1980, 1983) in the
invading fluid region (an active subset of the dynamic mesh). The governing equation for
free surface position is iteratively decoupled from this pressure solve step and can be
viewed as an extension of a local volume of fluid update method (Hirt and Nichols, 1981)
that uses an active cell level set approach localized in a layer at the propagating front. A
layered model through the thickness is implemented to accommodate shear-thinning
effects in the generalized Newtonian viscosity models (Carey and Chow, 2003; Myers,
2005) and integration through the depth employs a layered quadrature scheme.

An outline of the paper is as follows: in section 2 following we briefly describe the
coupled system for the Hele-Shaw problem and the class of generalized non-Newtonian
viscosity models considered in the present study. The iterative decoupled algorithm,
discretization of the pressure equation, Newton scheme for the shear rate computation
and moving free surface scheme are outlined in section 3. Numerical benchmark
studies that examine performance, time to fill and the evolving free surface as well as
discretization errors and geometric complexities conclude the work.

2. Hele-Shaw model

2.1 Coupled system

For the class of fluid flow problems considered here, model simplification can be
achieved both through a perturbation analysis in terms of the thickness parameter and
using the disparate time scales associated with injection and pressure relaxation. This
leads to a coupled model with a moving front determined from the velocity field during
injection and a quasi-static pressure equation due to rapid pressure relaxation. The
resulting quasi-steady 2D Hele-Shaw pressure partial differential equation has the
form (Hele-Shaw, 1898; Hieber and Shen, 1980):

V-SVp =0, (1)

where p is the pressure and
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is the “fluidity” for mold thickness 2/ and generalized Newtonian viscosity 1 = n(),
where  is the shear rate. (Here, and in subsequent numerical studies, symmetry with
respect to a centerplane z = 0 is assumed.)

Integrating the momentum conservation equation through the mold thickness,
yields the following implicit relation between velocity and pressure gradient:

8]’) (Jzz/ , Jth/ /) 8p (Jzz/ , lez/ /)
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where the viscosity in the integrand depends on velocity gradients for the generalized
viscosity models considered here.

Since velocity is proportional to the pressure gradient, while the pressure field does
not vary in the gapwise direction, it is convenient to express equation (3) in terms of the
depth averaged velocity ¥ with components:

Uy =

1" S 1" S0
%Jovxdzf—%a and Uy—%Lvydszﬁafy, (4)

and use these average values to advance the free surface position during mold filling.
The location of the evolving free surface during injection is then determined from the
solution of a level set transport equation for advection of a passive scalar ¢:

aiM+V~(V¢h):0. (5)
ot
Here phase ¢ = 1 throughout the injected fluid subregion and ¢ = 0 in the remaining
mold region being invaded by the encroaching fluid. The discontinuity contour
represents the free surface.

Under the thin injection layer assumption, only pressure and in-plane shear stress
play a significant role in the conservation equations, while shear rate is dominated
by the transverse velocity gradient contributions (Verhoyen and Dupert, 1998). A more
detailed derivation of the corresponding full non-isothermal model can be found in
Kenndy (1995), Subbiah et al. (1989) or Tucker (1989). Typical boundary conditions for
the isothermal Hele-Shaw injection problem are a prescribed inlet flow velocity or
pressure together with a zero normal flow boundary condition, which implies zero
normal pressure gradient from equation (4), along any impermeable boundary and zero
pressure at the evolving free surface of the injected fluid.

Clearly, there, are several layers of weak coupling in the model and these are
exploited later to enhance efficiency in a decoupled algorithm. More specifically, the
motion of the free surface is determined by the velocity field of this moving surface at
the end of each timestep in a local volume of fluid (VOF) calculation. This velocity field
can be post-processed implicitly by non-linear solution of equation (4) using the
pressure gradient determined from a prior decoupled quasi-static pressure solve of
equation (1). The quasi-static pressure equation depends implicitly on the viscosity and
therefore the velocity through the coefficient Sy in equation (1).
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2.2 Viscosity models
Physically, viscosity is a fluid property that represents the internal resistance of the
material to deform (Helleloid, 2001). Mathematically, viscosity is defined by a relation
between shear stress, 7, and shear rate, 4. If this relation is linear, the viscosity is
constant and the fluid is classified as a Newtonian fluid. Fluids described by a non-
linear relation between the shear stress and shear rate are termed non-Newtonian
fluids. In particular, when the viscosity depends on the shear rate only, the fluid is
referred to as a generalized Newtonian fluid, and that is the case of most polymers used
in injection molding processes.

More specifically, several generalized Newtonian models for viscosity 7 = n(7)
have been proposed for flow subject to high shear rate:

) 1
v = §D:D> (6)

where D = Vv + Vv! denotes the rate of strain, { indicates the matrix transpose and
[:]indicates tensor product.

From experiment, the viscosity curves should fit properly the fluid behavior in four
distinct shear rate regimes:

(1) for sufficiently low shear rate, viscosity is essentially independent of shear rate
and the material exhibits Newtonian behavior;

(2) at a higher value of shear rate, the dependence of viscosity on shear rate
presents a non-linear transition regime (easily noticed in a log-log plot);

(3) after a further increase it moves into a regime where the viscosity can be
modeled by a Power-law relation; and

(4) finally, the viscosity curve levels out, and the material tends toward Newtonian
behavior once more (Helleloid, 2001; Myers, 2005).

Among available viscosity models, the Carreau and especially the Cross viscosity
models exhibit good agreement with observed behavior for certain polymers of
industrial interest (Verhoyen and Dupret, 1998). Both viscosity models present the
Newtonian plateau at low shear rates and the Power-law asymptote at high shear rates
when a log-log plot is used to describe behavior. However, the transition between these
two regimes is more rapid with the Carreau model. In subsequent numerical studies,
these types of models are compared for Hele-Shaw applications over a set of parameter
values in order to simulate the behavior of a real polymer.

The representative generalized Newtonian viscosity models considered here are
(Chen et al. 1998; Myers, 2005):

(1) Power-law. The standard Power-law model describes the viscosity by:

n=Kiy1, (7)

where 4 is the shear rate. This model cannot predict the Newtonian plateau, so it is
considered inappropriate for fluids that exhibit such behavior at low shear rates.



(2) Cross model. The Cross model is described by:

_ "o
RN ’

where 7 is the Power-law index, 7 is the zero-shear viscosity and 7* is the
parameter that defines the transition region between zero shear rate and the
Power-law region of the viscosity curve.

()

(3) Carreau model. The Carreau model is typically written in terms of four
parameters:

n—1
7
)

)

where 7, and 7 are the limiting viscosities at high and low shear rates. The
high shear viscosity is generally associated with a breakdown of the fluid and
is frequently set to zero (Myers, 2005).

N =" + (770 - 7700)[1 + >‘272]

(4)  Ellis model. The Ellis model may be written in terms of shear stress 7 as:

M (10)

n—17
14|
T2

']7:

where 79 is the viscosity at zero shear rate, 7y is the shear stress at which the viscosity is
n =no/2and (n — 1)is the slope of the curve log[(no/n) — 1] x log(7/71/2).

The model parameters for a given fluid are usually determined experimentally. (The
experimental data provided by a viscosity measuring instrument for a given fluid
is fitted by the chosen viscosity model.) Mathematically, this consists in the
determination of the viscosity model parameters that minimize the distance between
the model used and the given data. Table I provides parameter values that characterize
polystyrene for each one of the models (Chen et al. 1998; Myers, 2005).

In Figure 1 the viscosity 7(4) fit is graphed against strain rate 4 for the above
generalized Newtonian models of polystyrene in a log-log plot. Notice that, excepting
the Power-law, all models include the Newtonian behavior, n(¥) = o, in case of low
shear rates.

3. Iterative decoupling and discretization

3.1 Decoupled approach

Numerical simulation of the injection-molding process then involves quasi-static
approximate solution of equation (1) for the pressure field in concert with advancement

Model 70 n A Ti/2 T* K
Carreau 4x10° 04 464

Ellis 4 x 10° 32 126 x10°

Cross 4 x 10° 0.2838 1.791 x 10°
Power-law 0.39 35 x 10°

Source: Chen et al, (1998); Myers, (2005)
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Figure 1.

Comparison plot of
generalized Newtonian
viscosity models with
polystyrene parameters
from Table I
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of the free surface (Kennedy, 1995) based on equation (5). In the present work an
iteratively decoupled strategy is implemented by lagging coefficient dependencies
between the respective equations. The main steps in the iterative decoupling and
associated linearizations for a typical injection timestep are described as follows. For a
given injected domain at time £, and a given decoupled iterate:

(1) Solve iteratively linearized pressure equation (1) on current domain. Sy is
calculated from a current iterate of viscosity (such as the Newtonian viscosity
at the initial iterate or the current updated viscosity at following decoupled
iterates). Using this “current” value of S, linearizes the pressure equation, and a
pressure approximation is obtained by solving the associated discretized linear
equation on the current domain. Then from the pressure solution iterate, the
values of velocity components 7, and 7, are computed in a post-processing step
from equation (4) using the current viscosity value iterates. Next, a new value of
the shear rate is determined from this average velocity field and the value of the
viscosity is updated using this value of shear rate according to the formulas for
the generalized viscosity models of equations (7)-(10). The above process is
repeated until the variation of the pressure, in two successive iterations, is
smaller than a specified tolerance.

(2) Moving the free surface. The average velocity from the above computation is
used to update the location of the free surface according to the scalar level set
equation (5).

Both steps above are repeated until the mold is completely filled.

The following sections present the strategy for constructing the local active dual
patches to form a dynamic virtual mesh of active elements and then apply the
numerical techniques to solve the fluid flow governing equations (section 3.2). Then,
the methodology for solving the pressure equation using the present local mesh control
volume finite element method (CVFEM) (section 3.3), the strategy for approximating
the shear rate (section 3.4), the timestep selection for the advancement of the free
surface using a similar approach applied to the VOF (section 3.5) and a detailed
description of the procedures that compute the solution (section 3.6) are also presented.



3.2 Local patch construction

An unstructured node-centered finite volume approach is to be applied on a mesh
constructed dynamically from active points (those containing fluid) in a background
pointset. In the present work, a sequential local patch construction is implemented that
involves defining and ordering neighbor points in a set of overlapping discs centered
on the associated active points. The radii of the discs are expressed in the form ¢!/ VN,
where [ is a characteristic length of the mold, N is the number of points defining the
mold and c¢ is a local scaling parameter for each point that determines a disc covering
the adjacent patch as displayed in Figure 2. Moreover, special basis functions may be
introduced on the discs to define corresponding so-called meshless methods
(Belytschko et al., 1996; Bernal and Kindelan, 2007; Li and Liu, 2002; Liu, 2003).

In the present work, a local triangulation of the points in each disc is constructed to
yield a corresponding patch of elements. The “dual” finite volume polygon for this
mesh patch centered at interior node 7 is obtained by connecting the geometric centers
of triangles with the median points of “radial” sides. This process is illustrated for a
representative disc containing several points adjacent to center point ¢ in Figure 2.

The linearized Hele-Shaw equation is discretized on each finite volume patch as
described in the next subsection and solved for the nodal pressure vector.

Remarks. The union of the respective triangulation and polygonal local patches over
the domain define a corresponding global finite element-type triangulation and medial
node-centered polygonal control volume mesh, but we elect not to construct the global
meshes in the present work. Instead the local patches are used to construct “stencils”
sequentially and “on the fly.” Note that a deficiency of this approach is that the
triangulation and dual polygonal mesh may not be optimal with respect to cell shape.
For instance, the construction does not yield a Delaunay triangulation except for
special pointsets.

3.3 Finite volume formulation
The Hele-Shaw equation (1) for pressure can be written conveniently in divergence
form as:

vV-J=0, (11)

for flux vector J = —S,Vp. From the Gauss theorem, the associated conservation

(a)

Notes: (a) Disc centered at node i contains neighbor point subset
based on disc with a pre-defined radius; (b) neighbors of point i are
sorted and ordered; ¢ is a reference vector in the plane defined by the
points and n is the vector normal to this plane; (c) triangulation
defines the local patch and a virtual control volume follows by median
connection
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property on an arbitrary volume satisfies:
J V-JdV:J J-ndS=0,
v S

where S is the boundary of Vand n is a unit outward vector normal to S.

In the discrete CV scheme, this relation on arbitrary volume V in the domain is
replaced by the finite dimensional approximation obtained by restricting V to the finite
set of control volumes constructed for the specified pointset (Abbassi ef al., 2003).

For instance, let us consider a finite volume V; associated with node point 7 and let
7 denote the adjacent neighbors of 7; and, for notation simplicity, /* = (j + 1) mod N,
where N is the number of neighbors of point i. Accordingly, in Figure 2(c), N = 9 and
points 7 =1, ..., N are associated with point 7. Also, for each triangle i-j-*, points a
and c are the midpoints of segments ¢/ and #7*, respectively, and point 0 is the geometric
center of triangle. Assuming a conforming piecewise linear pressure for the triangles i-
7%, the contribution to the patch equation at node ¢ from segment @0Oc for the surface
integral interior to triangle i-/* (withj = 1andj* = 2 for a0c) has the form:

0 ¢
JJ-ndS—l—JJ-ndSZC,‘i-f—ijj-‘er*Pj*a (12)
a 0

where, for k = 1,7, 7%, p;, are the values of pressure at the vertices. Coefficients C, depend
on S, (which is assumed to be constant over the element at a given time) and on the
coordinates of these vertices:

G =200 =305 = 31) + (1 = 25— 3],
G = 210~ 20 —3) + (i — 2 ), (13
_>

Gr =5 (00 =30 0 = 3) + (%0 — %) (3 — )],

where D = (x;; + %y + X2i — YiXj — ViXj — Yj-%;).

Assembling the contributions of the other elements at node ¢ yields the completed nodal
equation with row entries A;. The resulting system is solved iteratively in subsequent
numerical studies by a gradient descent method. Such schemes require repeated matrix-
vector (matvec) product and dot product calculations. The more expensive matvec
operations are carried out node-by-node in the present formulation, thereby economizing
storage. (Similar element-by-element and edge-by-edge strategies have been described for
finite element CG algorithms (Carey and Jiang, 1986, 1987; Coutinho et al., 2006)). Diagonal
preconditioning is also easily implemented in this scheme (Bridson and Greif, 2006).

3.4 Approximating the shear rate
Recall that the shear rate is defined as:

NCHE




where the derivatives dv,/0z and dvy/0z may be analytically obtained though Hele-Shaw flows

differentiation of the expressions (3) for v, and v,. Simplifying:
.z
7= EIWI- (15)

Hence, the shear rate varies inversely with the viscosity which in turn depends
non-linearly on the shear rate for the generalized fluid models discussed earlier. The
resulting non-linear equation is solved iteratively by Newton’s method as follows.

Substitute the constitutive relation from (7)-(10) for the viscosity into equation (15)
to define the function G:

z
G(y) =7 ———=|Vp|- 16
() ") Vo (16)
The corresponding iteration function (Isaacson and Keller, 1966) for Newton’s method
applied to solve G = 0 is:

R+l :k _ G(’yk> (17)
GG
where G'(#) is the derivative of G with respect to 4 evaluated at 4.

For instance, expressions for G(4) and G'() for the Carreau model are given,
respectively, by:

Lon _1V)\24
" and G 1447210 DX
w1+ 0]

ntl *
2

G(3) =4~ 199 [1+ ()]

Pressure distribution is constant in the gapwise direction but both shear rate and
viscosity vary. Consequently, in the present numerical scheme, the gapwise direction of
the mold is divided into IV, layers, and both shear rate and viscosity are approximated
piecewise-linearly for each layer: knowing the shear rate at a certain thickness z, a new
value for the viscosity of the fluid at the same thickness is established according to the
viscosity model chosen.

3.5 Mouving the free surface

For approximate identification and advancement of the free surface, a VOF
discretization technique (Hirt and Nichols, 1981) is developed to discretize equation (5).
In this context ¢ can be interpreted as a “fill factor”: if ¢ is equal to 1 at a point of the
set, then the control volume associated with that point is assumed to be completely
full of fluid; conversely, if ¢ at the point is 0, then the associated control volume is
completely empty. Intermediate values of ¢ indicate that the control volume is partially
full and may be used to fit the free surface position (Shin and Lee, 2000).

Since the free surface is moving across the background pointset, a local approach
for updating the front involves control volumes at the front. The local control volume
used for the approximation of the advective transport equation (5) is applied only
to points having 0 < ¢ < 1; that is, those points still to be completely filled. The
approach is illustrated in Figure 3: Figure 3(a) shows the pointset for the domain, the
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Figure 3.

Determination of local
volume Vand boundary S
associated with point 7 on
the free surface of the fluid

position of the free surface and a point ¢ on the free surface. Figure 3(b) isolates the disc
for point 7 and its neighbors; and Figure 3(c) shows the control volume for point 7.

Several approaches have been used to discretize equation (5). For example,
considering the integral conservation form:

Jv<agjl+v-(v¢h)> dv =0, (18)

and applying Gauss theorem:
0 _
7] ¢th+J 61V -ndS =0, (19)

where S'is the boundary of arbitrary volume Vand n is a unit outward vector normal to S.

Now consider a partially filled virtual finite volume V; associated with node point ,
Le. 0 < ¢; < 1. Let; and j* denote two adjacent neighbors of 7 forming a typical local
triangle i-j* in the associated patch centered at ¢ for notational simplicity, let
7= (G +1) mod N, where N is the number of neighbors of point 7. For example, in
Figure 2(c), N =9 and points = 1, ..., N are associated with point 7 as shown. For
finite volume V, equation (19) implies:

0

ajwwdvz—kwv-nds. (20)

Since both ¢ and % are approximated as constant in V}, the left-hand side of equation
(20) simplifies accordingly to:

hﬂ/,»%:—J $hv-ndS, (21)
ot s

where the surface integral contributions are associated with filled neighbor points. For

example, for CV boundary segments 20 and Oc corresponding to neighbors 7 = 1 and
7* = 2 of i in Figure 2(c):

0
J ohv-ndS = D, ]fljﬁx(yo —ya) + ®; hﬁy(xa — xo), (22)

a

inlet free surface

1232225

Notes: Only filled points (that is, having ¢ = 1) are used in the advective
calculations



¢
Jo OhVv-ndS = ;. hj*ﬂx(yc —yo) + @ hj@y(xo — xc), (23)

where ®; is the average value of ¢; on ¢0. In this model, it is assumed that the filling
factor front is sharp and parallel to a0, ®; =1 if ¢; =1 and ¢; =0 if ¢; # 1.
Analogously ®; is defined for the interface Oc.

Recalling that point 0 is the centroid of triangle i-j-*, equations (22) and (23) can be
rearranged so that the right-hand side of equation (21), restricted to triangle i-j-*,
reduces to:

J ¢hv-ndS = (E;® + E; @), (24)
S;

where Ej-; and £+ depend on the coordinates of points and the velocities associated
with the virtual finite volumes as:

/. _
Ejoj = — 2[00 — 20 +3)) — By (2 — 22 + 7)),

6
/o _
Ejj- = é [0:(vi — 29 +35) — By(% — 2% + %) .

(25)

Equations (22) and (23), and corresponding coefficients E, are calculated for all
triangles in the patch for node 7. In other words, all neighbors j of point ¢ with ®; =1
contribute to the increasing filling factor of point z and Equation (21) becomes:

0 1 &
% ="hT > (Eji®; + Eyj-D5-). (26)
=1

Introducing a Forward-Euler scheme with timestep 6¢, the resulting explicit update
formula is:

. ot
O = = > (Eipj® + Eyj- ;). (27)
1 lj:1

The results of the above calculation may be used to determine the timestep size
necessary to fill a control volume associated with any point ; that has 0 < ¢; < 1:

(1= HhV;
S (Eyp i@ + Ejj ;)

Oty = (28)

Choosing 6t to be the minimum value of é¢4|; gives the timestep such that only one
control volume of the advancing front will be completely filled, and no control volume
is overfilled. This implies that a relatively sharp front can be preserved. Hence, this
strategy results in a scheme with controlled numerical diffusion, as compared to other
VOF methods (Hirt and Nichols, 1981).

The time increment is evaluated at every step of the simulation because of the
evolving filling factor field and because control volumes may have different sizes
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(Estacio and Mangiavacchi 2007). The update is explicit with corresponding local
timestep that depends on the mesh resolution at the front to satisfy a Courant condition
for stability and the constraint that ¢ cannot exceed 1. In the later fill post-processing
results the computed fill time is taken to be the time to fill all nodes (¢ = 1 at all nodes).
The approximate fill volume at any time #* is computed as the accumulated volume for
the Voronoi dual patches (see Figure 2(c)) for nodes 7 that are filled.

3.6 Algorithn

This section presents the main solution algorithm for the discretized, iteratively
decoupled system described in section 3. Algorithm 1 computes the quasi-static
pressure field approximation, updates the velocity as a decoupled post-processing step
and advances the free surface during the mold filling. The main steps are identified by
line and action as follows.

Algorithm 1: Solution procedure

Data: Coordinates X,Y,Z of background pointset for the mold geometry and interior.
Result: Pressure and velocity fields during the mold filling.
Assign initial values to h, 1o, Sz and ¢;
Set boundary conditions for p;
Set the viscosity model according to Section 2.2;
forall points i do
Compute the radius of each point ¢ and find neighbors of i;
Compute the vector n normal to the plane that contains ¢ and its neighbors j;
Compute the reference vector ¢ in the plane;
forall neighbors j of point i do
| Compute angles a; between vectors ij and ¢;
end
Sort angles a and create a vector nb_s of the neighbors of ¢ sorted according to a;
end
is_not_filled < true;
while is_not_filled do

© W0 N0 Us W N

e i =
Lo VI ]

15 Select active points;

16 convergence_pressure < false;

17 it « 0;

18 while ( (mot convergence_pressure) and it < ityq,) do

19 forall neighbors j in nb_s of active point i do

20 Approximate a local value for Sy as average of Sy in points ¢, nb_s(j) and nb_s(j + 1);
21 Compute Cj, Cj, Cj- and D according to equation (13);
22 Assemble matrix K with the values of Cj, C; and Cj«;
23 end

24 Solve linear system for pressure p;

25 Determine velocities 7, and 7, according to equation (4);
26 Determine the viscosity according to equations (7) — (10);
27 Determine the fluidity S» according to equation (2);

28 convergence_pressure < Check convergence of the pressure field;
29 it «— it + 1;

30 end

31 Determine velocities v, and v, according to equation (3);

32 Update the free-surface position ¢ according to equation (27);
33 Find the new time-step dt according to equation (28);

34 filling_time «— filling_time + 0t ;

35 is_not_filled «+ Check if mold is completely filled;

end

@
=)




In line 5, a radius is associated to each point 7 in the discretization defining the Hele-Shaw flows

neighbors of 7. The neighbors of ¢ are sorted according to the angle formed from the
point j to point  and a reference vector ¢, as performed in lines 6-11. After the angles are
sorted, a new vector nb_s is created by sorting the order of the neighbors of 7 according
to these angles and is used to compose the finite volume for applying the CVFEM. Line
14 defines the loop for the timestep: since the present approach uses a VOF method
with a timestep constraint based on only one control volume being filled at each
timestep, the loop occurs while there is at least one point j having ¢; < 1. Line 15
updates the active points subset as the front moves: inactive points are either empty of
fluid or points of prescribed inlet pressure, and do not participate in the calculation.
Line 18 displays the loop for pressure convergence with the method of successive
approximations. Line 19 performs the assembly of the linear pressure system for
equation (1) using equations (12) and (13) for each active point 7, according to sections
3.2 and 3.3. Line 24 solves the linear system for the pressure using a conjugate gradient
method. Finally, lines 25-27 call procedures for calculating, respectively, the depth
average velocity field according to equation (4), the viscosity model, using one of the
equations (7)-(10) and the fluidity Sy, according to equation (2).

4. Numerical results

Results of simulations for several test problems are now presented for isothermal flow
of Newtonian and non-Newtonian fluids in several flow and mold conditions. First, the
computed fill time of the moving front algorithm is used to assess the mass-preserving
accuracy of the scheme and code (section 4.1). Then, a complexity analysis with
operation counts for the most computationally intensive part of the calculation is
presented (section 4.2). Next, the computed solution is compared with a manufactured
exact solution for a simple test geometry (section 4.3) and with numerical results from
the literature for more complex geometry (sections 4.4 and 4.5).

Remark: For convenience, the pointsets used in the present case studies were generated
by Easymesh (Niceno, 2001) from a specified set of points on the boundary. For
relatively simple domains and boundary point spacing, the associated Easymesh
triangulation yields a relatively equispaced pointset. Other pointset generation
techniques are also appropriate. The Easymesh triangulation is not explicitly used in
the subsequent mold filling simulations — only the triangle vertices are loaded as the
background pointset.

4.1 Fill-time comparison
The exact time needed to fill a mold with constant thickness at a given fixed flow rate
can be calculated trivially based on mass conservation in these flow conditions, and is:

A
- 2

where A is the mold area, / is the inlet region length and vy is the injection velocity. This
therefore provides a basis for a test of the accuracy of the moving front algorithm in
particular, and more generally the mass-preserving accuracy of the overall scheme and
code. Other verification tests are also needed (Roy, 2005) and some will be considered
subsequently.
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Figure 4.
Mold dimensions and
inlet region (in pattern)

Table II.

Data employed in the
convergence study and
relative error (%)

Let us then compare the exact fill time for the simple square mold in Figure 4 with
horizontal flow velocity specified at the mold inlet as vy = 10~! m/s against simulation
fill times for a set of three successively finer uniform pointsets defining mold
boundaries and interior having 100, 400 and 1,600 points, respectively.

The difference between the exact fill time and the computed fill time for a given
pointset is the fill time error and the absolute value of this error can be compared for
successively refined pointsets to gauge this global aspect of accuracy and convergence
dependence on the discretization. For the equidistributed pointsets of the type used here
the pointset is uniform with typical average local patch diameters [/ VN in a mold of
characteristic length /. The slope of the log-log plot of absolute error against pointset size
1s analogous to the rate of convergence expected for computations on uniform meshes.

The relation for the observed order of accuracy ¢ in terms of the fill time error / is
(Roy, 2005):

()
)

where Ly, refers to the error committed in the refined pointset, and L1 in the coarse
one and, similarly, d;, and dj,; are the average local patch diameters, where the
discretization error is examined by employing the relative error.

For this test case, the exact filling time is 5s whereas the present method exhibits
convergence from below for fill time with 4.92, 4.96 and 4.98 s for the present scheme
with sets of 100, 400 and 1,600 points, respectively. Table II summarizes the data
employed for the analysis and the resulting relative error for a Newtonian fluid case.
Similar fill time results are obtained for the non-Newtonian viscosities.

Figure 5 illustrates that the order of accuracy obtained is approximately one, since
on the logarithmic scale, a first-order scheme displays a slope of unity whereas a
second-order scheme displays a slope of two.

For a given mesh the algorithm fills one Voronoi cell at each timestep as described
previously. A Voronoi cell centered on node ¢ is “assumed to be filled” when the
associated node value ¢; = 1. Hence, one can monitor the fluctuation in fill time error

10cm
201’1’1\
- 12 | @O.lcm
X 10cm
Pointset name Nodes Diameters (m) Filling time (s) Relative error (%)
Pointset 1 100 0.0100 4925000 1.500000
Pointset 2 400 0.0050 4968750 0.625000
Pointset 3 1,600 0.0025 4985937 0.285259




10°

—=— Relative error
- - -1st order slope
‘‘‘‘‘ 2nd order slope P

0.005
d

0.01

at each timestep of the injection process by using the computed fill volume at the
conclusion of a given timestep to infer a corresponding exact time for that volume from
equation (29). The procedure for determining when a cell is filled will influence the
accuracy at each timestep with larger fluctuations in error on coarser meshes. We
summarize the results of this comparison in Table III, which presents the maximum,
minimum and mean fill time error values (as a percent error) during the process for
each of the three meshes.

4.2 Performance test

Performance data can be achieved either through CPU times or operation count
complexity. CPU times are less reliable and depend on the processor, compiler and
implementation. Hence we have focused on the complexity and operation counts for the
most computationally intensive part of the calculation: the non-linear successive
approximation scheme with the conjugate gradient system solves with the non-
Newtonian fluid models on the evolving active mesh as the fluid front advances. This is
augmented with tabulated numerical performance results for cases computed on two
meshes (a coarse mesh and a refined mesh with four times as many node points) and
the mold described in section 4.1.

Details of successive approximation counts, conjugate gradient solve steps at each
non-linear iteration and local non-linear Newton solves for the viscosity models are
tabulated and compared on Table IV for representative timesteps at different fill levels
(5, 25, 50, 75, 95 percent) on the two meshes. The conjugate gradient method employed
in this case uses incomplete Cholesky preconditioning with no fill-in, with the option of
recomputing the preconditioner or fixing the preconditioner for the associated number
of successive approximation solves.

Pointset name Diameters (m) Maximum error Minimum error Average error

Pointset 1 0.0100 5.5464 0.1505 2.1836
Pointset 2 0.0050 3.0855 0.0072 1.3495
Pointset 3 0.0025 1.4315 0.0004 0.7469

Hele-Shaw flows
In injection
molding
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Figure 5.

Relative error committed
on the prediction of time
filling of a mold and order
of accuracy q of the
present method

Table III.

Measure of error
committed throughout
the simulation (%)
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Table IV.

Operations count for the
successive approximation,
conjugate gradient and
non-liner Newton (when
applies) solve for each
viscosity model

Model Pointset % fill 5% 25% 50% 75% 95%
Carreau 100 <NSA> 6 5 4 5 5
<NCG>/NUN 717 9/27 11/52 14/57 15/97
<NVI> 7.4 7.0 7.0 7.0 7.0
400 <NSA> 4 4 3 3 3
<NCG>/NUN 8/25 13/104 18/204 24/304 26/384
<NVI> 7.1 6.9 6.9 7.0 7.0
Cross 100 <NSA> 17 10 8 6 10
<NCG>/NUN 6/7 9/27 10/52 12/60 14/97
<NVI> 4.7 4.2 4.0 4.0 4.0
400 <NSA> 12 6 5 5 3
<NCG>/NUN 8/24 13/104 18/204 23/304 26/384
<NVI> 4.3 4.2 4.0 4.0 4.0
Ellis 100 <NSA> 11 7 6 5 8
<NCG>/NUN 6/7 9/27 10/52 12/60 14/97
400 <NSA> 8 5 4 3 3
<NCG>/NUN 8/24 13/104 18/204 24/304 26/384
Power-law 100 <NSA> 6 6 3 5 5
<NCG>/NUN 717 10/27 11/52 14/60 15/97
400 <NSA> 5 4 3 3 3

<NCG>/NUN 8/24 13/104 19/204 24/304 26/384

Notes: <> denotes average values, NSA denotes the number of successive approximations for
the pressure, NCG denotes the number of conjugate gradient iterations for solving the linear
system and NVI is the number of iterations of the Newton’s method for solving the non-linear
viscosity; values obtained for mold in Figure 4 described by 100 and 400 points

Figure 6.
Dimensions of the
channel and inlet region

In the tabulated values below, the preconditioner is fixed based on the linearized
system at the first successive approximation solve at each timestep. This implies more
conjugate gradient iterations than the alternative where the preconditioner is reformed
after each successive approximation iteration.

4.3 Inlet pressure channel test

Typical boundary conditions for the isothermal Hele-Shaw injection problem are
prescribed inlet flow velocity or pressure. During mold filling with a prescribed constant
inlet flow velocity, an increasing pressure at the inlet region is anticipated throughout the
duration of the simulation. Injection into a simple rectangular mold domain can be
compared with the simple analytic solution to a reduced one-dimensional mathematical
model to evaluate aspects of the method and software implementation.

Accordingly, we consider injection of a rectangular mold as shown in Figure 6 with
constant horizontal flow velocity v, specified at the mold inlet until the mold is half-
way filled, and compare against an analytical solution for the pressure field.

The mold dimensions do not vary in the x-direction, and slip boundary conditions
are applied at the narrow side walls. It follows that:

Y\TZ_R% ‘\%;n(:.zcm

10cm




B _ 0 ad 5= 0. Hele-Shaw flows

dy In injection

so the velocity solution in the fluid is simply: molding
Uy =1y and 7, =0, (30)
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and the filling front advances as a plane perpendicular to the x-axis, moving with
velocity vo. From equation (4), the corresponding pressure distribution satisfies

op h op
e —S—Zvo and a—ny,

Integrating, the pressure distribution is the linear function:
h
D = Dinj — §200 x,

where p;,,; is the pressure at the inlet.
At the moving free surface x = 6l, p = po, where 8/ is the displacement of the free
surface and pg is the atmospheric pressure, so the inlet pressure is:

h
ij = pO + 7}06[5_ . (31)
2

In the case of a Newtonian fluid, the viscosity is constant and therefore the fluidity S, is
constant so the analytic solution for pressure at the inlet follows immediately. In the
non-Newtonian case the non-linear dependence of fluidity on shear rate enters
the calculation. Here we consider polystyrene with viscosity behavior modeled by the
generalized Newtonian models given in section 2.2. For Carreau and Cross models a
non-linear Newton solver is used to compute the shear rate and hence the viscosity for
each of the NV, layers through the gapwise direction.

Accordingly, Ss is computed by vertical piecewise-trapezoidal quadrature through
the mold thickness and an approximate pressure at the inlet follows from this
calculation with numerical errors arising here from the non-linear scalar solve and
layer quadrature. A small tolerance for the Newton iteration and a sufficiently fine
layer discretization for the quadrature ensure that these numerical errors are controlled
to high precision in approximating the analytic non-Newtonian solution.

This simple analytic result for the inlet pressure is now used in a baseline
comparison of the numerical method and code for the stated viscosity models at several
different inlet velocities when the mold is half-way filled, i.e. 8/ =5 x 10~2m. The
background pointset from Easymesh defining mold boundaries and interior has 498
points. In the following tests, four different values of an average shear rate,
Yavg = Vo/h, are considered for each viscosity model. Also, the gapwise numerical
integration of S, is carried out for different choices of N, to examine the sensitivity to
layer discretization.

Table V gives analytical inlet pressures obtained for each viscosity model at four
different values of shear rate. For the analytical solution, viscosity and fluidity are
approximated numerically in the gapwise direction using a very fine discretization
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Table V.

Analytical inlet pressure
(Pa) of the channel
entrance for various
viscosity models at four
representative values of
average shear rate

Yave = Yo/h when the
mold in Figure 6 is half-
way filled

(V, = 1,000 layers) so quadrature error is effectively eliminated. As a comparison,
Table VI illustrates the relative error (percent) committed by the CVFEM method, for
each viscosity model at the same shear rates, and with 5 and 100 layers in the gapwise
direction, respectively.

The smaller error levels for IV, = 100 layers are essentially unchanged from those at
N, = 20 and hence quadrature error has been controlled so the error tabulated is
mainly associated to the spatial discretization. The error committed considering
N, = 5 includes both the error due to spatial discretization and the error associated
with the numerical integration.

The velocity profiles for molten polystyrene are displayed in Figure 7 at the two
extreme values of average shear rate described earlier. For 7,,, = 107, viscosity is
essentially independent of shear rate, and the Carreau, Cross and Ellis models closely
approximate Newtonian behavior, therefore the velocity profiles for such models are
coincident. The Power-law model does not predict the Newtonian behavior for low
shear rates and presents a more flattened profile in the central region. The subsequent
increasing values of shear rate leads to a transition region for the viscosity models to
the Power-law region. The Cross, Carreau and Ellis velocity profiles flatten out at the
center, becoming similar to the Power-law fluid. This is evident when 7, = 10%.

Model 1074 1072 10° 10%
Carreau 29999 x 10* 2.3714 x 10° 1.8252 x 107 11518 x 10°
Cross 29343 x 10* 1.8592 x 108 1.6613 x 107 6.4741 x 107
Ellis 29999 x 10* 2.3185 x 10° 15284 x 107 6.5470 x 107
Power-law 43567 x 10° 26252 x 10° 15815 x 107 95314 x 107
Newtonian 3 x 10* 3 x 108 3 x 10° 3 x 10%°

Note: N,=1,000

Table VI.

Relative error of inlet
pressure estimation (%)
at four values of the
average shear rate ¥,

Model N, 10~* 1072 10° 102
Carreau 5 3.0068 3.0573 1.9614 1.7277
20 0.0012 0.1253 1.1791 1.3902
100 0 0.1180 1.1615 1.3891
Cross 5 2.9990 2.7593 2.3114 21717
20 0.0290 0.2881 1.0508 1.2706
100 0.0238 0.2743 1.0474 1.2697
Ellis 5 3.0068 3.0149 2.2115 2.0269
20 0.0082 0.1143 1.0935 1.2923
100 0 0.1293 1.0861 1.2800
Power-law 5 1.9235 1.7713 1.7325 1.7553
20 1.2349 1.3856 1.4309 1.4017
100 1.2188 1.3789 1.4164 1.3943
Newtonian 5 3.0067 3.0067 3.0067 3.0067
20 0.0092 0.0092 0.0092 0.0092
100 0.0033 0.0033 0.0033 0.0033

Note: The numerical integration of S, is conducted considering 5, 20 and 100 layers in the
gapwise direction




The corresponding viscosity behavior is illustrated in Figure 8: at low shear rate the
generalized viscosity models, excepting the Power-law model, exhibit a Newtonian
viscosity, while at high shear rates the viscosity models are similar to Power-law
behavior.

4.4 Entrance channel expansion and obstacle effects

In this test case we compare the approximation with the Newtonian fluid results in
(Chang and Yang, 2001) for a rectangular channel that has a narrow entrance and a
small rectangular “blockage” on the interior centerline of the mold (Figure 9). The goals

1 1
0.8 0.8
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Figure 7.

Velocity profiles predicted
by generalized Newtonian
models for polystyrene at
different values of
average shear rate ,,,

Figure 8.

Viscosity profiles
predicted by generalized
Newtonian models for
polystyrene at different
values of average shear
rate Yayg

Figure 9.

Rectangular mold with
an entrance channel and
one insertion
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Figure 10.
Comparison of the
profiles of inlet pressure
for a Newtonian fluid
with the 3D results of
Chang and Yang (2001)

Figure 11.

Several free-surface front
profiles during mold
filling with a Newtonian
fluid

are to verify the capability of the method for predicting both inlet pressure and position
of the free surface for this expansion/obstacle configuration.

The pointset describing both mold boundary and interior has 608 points with
interior points relatively uniformly distributed. The thickness of this mold is constant
and equal to 2 x 102 m and the gapwise direction is divided into N, = 8 layers.

Figure 10 compares the inlet pressure profile obtained for the present method with
the results in (Chang and Yang, 2001) for a Newtonian fluid (19 = 10* Pa s) and inlet
velocity vy = 0.37 m/s, which correspond to a filling time of 2 s, according to equation
(29). The slight “bumps” in the monotone curve are due to the interaction of the front
with the “obstacle”.

Figure 11 depicts the position of the free surface at six different stages in mold
filling: the black line represents the free surface of the fluid; the mold volume located on
the left side of the black line is filled with fluid while the mold volume located on the
right side of the black line is still empty. The predicted positions of the free surface
agree with the results in (Chang and Yang, 2001).

The study conducted in section 4.3 compares computed inlet pressures against
analytic results for a simple rectangular mold geometry with Newtonian and non-
Newtonian fluids at several shear rates, while the study above compares inlet pressure
profiles with computed results from the literature for a Newtonian fluid in a mold
geometry with an interior boundary for which no analytic result is available.

20

15¢

101

Pressure (MPa)

. = Chang & Yang (2001)
— Present method

0 0.5 1 1.5 2
Filling time (s)

=R
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|

Notes: Predicted positions are consistent with the 3D results in
Chang and Yang (2001)



Now, the effect of different generalized Newtonian viscosity models on the inlet
pressure results are now considered for this latter geometry under the same flow
conditions for polystyrene as described in section 2.2. In this case the average value of
shear rate is 7,,, = 1.85 x 10?s~! and the computed inlet pressure profiles are
displayed in Figure 12.

The results displayed in Figure 12 exhibit behavior that is consistent with and may
be anticipated from Figure 1 and also in Table 5 for this value of shear rate. At the
higher shear rate, the Cross and Ellis models behave similarly, having lower viscosity
and, therefore, lower pressure than the Carreau and Power-law models, while the
Carreau model has the highest values for both viscosity and pressure profiles.

Finally, the effect of the Cross, Carreau, Ellis and Power-law viscosity models on the
inlet pressure is now assessed in a flow with low shear rate. A representative value
of shear rate is taken as 7,,, = 10~2s7! resulting in a prescribed inlet velocity
vp = 2 x 107 m/s. The fluid again corresponds to the previous case of polystyrene.
The predicted injection time to completion of mold filling in the simulation is
36,808.61 s. Moreover, according to equation (29), the mold should be completely filled
within 37,000 s, indicating a fill-time error of only 0.51 percent.

The computed inlet pressure values are again graphed against injection time for
these fluids in Figure 13 as a means of displaying more clearly the effects of the distinct
viscosity models at this low shear rate. Notice that Carreau and Ellis models have quite
similar pressure distributions, while the pressure predicted with the Cross model is
lower and the Power-law fluid exhibits larger pressure values.

According to Figure 1, at ¥ = 10~2s7!, the Ellis and Carreau models exhibit similar
viscosity behavior and both converge to the Newtonian plateau, while the Cross model
exhibits smaller viscosity than the Newtonian value and the Power-law model exhibits
a considerably larger value. This expected behavior is clearly predicted by the present
method, as displayed in Figure 13. Although the use of such low prescribed inlet
velocity and consequently low shear rate is not a common practice in mold-filling
processes, this test case demonstrates the capability to handle simulations with these
viscosity models under a range of flow conditions.
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Figure 12.

Inlet pressure profiles

for polystyrene during

the mold filling of the
rectangular mold with a
narrow entrance channel
using several viscosity
models and prescribed
inlet velocity vy = 0.37 m/s
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Figure 13.

Inlet pressure profiles for
polystyrene during mold
filling of a rectangular
mold with a narrow
entrance channel using
several viscosity models
and prescribed inlet
velocity vp = 2 x 107 m/s

Figure 14.

Velocity magnitude and
four isocontours for
Newtonian (black) and
generalized Newtonian
(white) fluids, at

t = 35879.56 s

Figure 14 shows a comparison of the velocity magnitude for the four generalized
Newtonian viscosity models (white) against the Newtonian model (black) at
I = 36,808.61 s, during the sixth stage of mold filling. Four level sets of the velocity
magnitude obtained using each viscosity model are compared with the same
isocontours for the Newtonian fluid. The isocontours occur when the magnitude of the
velocity isequal to 1 x 107%,5 x 1076,1.5 x 10~° and 1 x 10~° m/s. It can be seen that
the Power-law model displays a less uniform velocity distribution than the other three
models, due to the increased viscosity at low shear rate, demonstrating one of the main
reasons why such a viscosity model is not appropriate in simulations with low shear
rates. Carreau, Cross and Ellis present very similar curves, with smaller stagnation
regions than that of the Power-law model. These results are also consistent with the
data from Figure 1, for low shear rate conditions.
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4.5 Multiply-connected geometry

In this last test case the flow domain is multiply-connected and corresponds to a
rectangular mold with several geometrical interior closed boundaries similar to a mold
configuration for an “electronic digital calculator.” The mold thickness is constant and
given by 7 =2 x10°m. A top view of the mold geometry with the inlet region
represented by several arrows is shown in Figure 15. The pointset defining both mold
boundary and interior has 2,063 points and the gapwise direction is divided into
N, = 15 layers.

The simulation study for this geometry is confined to the Cross fluid model as a
representative case to illustrate the capability of the numerical scheme to deal with
many splitting and merging fluid fronts in a multiply-connected domain. Also, results
for inlet pressure profile and filling time estimation are compared to results provided
by a different method in (Estacio and Mangiavacchi, 2007) for the same problem using
a conventional discretization and data structure. The prescribed inlet velocity is
vy = 1.25 x 1072 m/s.

Figure 16 compares inlet pressure profiles for the present method and that in
(Estacio and Mangiavacchi (2007), while Figure 17 depicts the free-surface position
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Figure 15.

Top view of mold
dimensions and inlet
region represented
by arrows

Figure 16.
Comparison of the
profiles of inlet pressure
through the simulation
obtained by the present
method with the results
of Estacio and
Mangiavacchi (2007)
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Figure 17.

Comparison between the
free-surface position
predicted by the present
method (in black) and the
method in Estacio and
Mangiavacchi (2007)

(in white)

Figure 18.

Free surface advancement
around the calculator
insertions

within the mold at four times during injection, for both methods: the present method (in
black) and the comparison method (in white).

There is a good agreement between the free surface position in both cases,
particularly early in the simulation when the front positions are mostly
indistinguishable. Figure 18 displays in detail the advance of the free surface around
the “obstacles” using the present method.

A comparison of fill time is also made relative to that in (Estacio and Mangiavacchi
(2007). The expected injection time is 3.9278 s, whereas the present method provides
the predicted fill time of 3.8844 s for the given pointset, resulting in an error of 1.10
per cent. The previous method in Estacio and Mangiavacchi (2007) predicts 3.9919s
resulting in a comparable error in the fill time of 1.60 per cent. Errors in fill time can
clearly be interpreted in terms of mass errors and the mesh refinement study presented
in section 4.1 explores the rate of convergence under a relatively uniform pointset
refinement in this context.

5. Concluding remarks

This work presents a novel unstructured simulation approach for injection molding
processes described by the Hele-Shaw model. The discretization strategy involves dual
meshes with active and inactive cells determined from an initial background pointset
describing the domain and the boundary: local active dual patches are constructed “on-
the-fly” for each “active point” to form a dynamic virtual mesh of active elements that

A=

~ =N

(a) 26.32% filled (b) 48.72% filled (c) 77.07% filled (d) 97.52% filled



evolves with the moving interface. An adaptation of the CVFEM is employed in the Hele-Shaw flows

context of a dynamic mesh for discretizing the pressure field, while an analogous
dynamic local VOF level set type of scheme is introduced in order to predict the free
surface position.

Several supporting numerical tests and performance studies for isothermal flow of
Newtonian and non-Newtonian fluids are conducted. First, the accuracy of the moving
front algorithm and the mass-preserving accuracy indicated by “fill time” are
investigated (section 4.1). Next, numerical performance results, based on operation
counts, for each one of the viscosity models are compared for two pointsets (section
4.2). Further studies compare inlet pressure profiles for both simple and more complex
geometry and fluids (sections 4.3 and 4.4). Finally, results for the present method are
shown to be comparable to those from another method for a polystyrene fluid in a
complex geometry (section 4.5).

There are still several aspects that merit further study and extension of the
methodology. While in Hele-Shaw type approximations some physical effects are
ignored (e.g. fountain flow (Holm and Langtangen, 1999; Kietzmann ef al, 1998) or
cannot be predicted (recirculation zones), there are other effects that can be
incorporated in our model. In particular, non-isothermal temperature effects on the
fluid viscosity and subsequent cooling and solidifying phenomena are very relevant
and a natural extension of the work.

Furthermore, in mold-filling simulations with strong local curvature of the front,
surface tension contributions may become important, and this extension would be
warranted. With respect to the methodology, the background pointset infers a mesh
that is dynamically reconstructed here, and there are a number of efficiency issues and
improvements that would be relevant to industrial applications. For instance, one can
use the pointset to construct special bases and invoke a so-called “meshless” scheme
using the basis. This would require some interesting strategies to deal with the
dynamic point enrichment of the moving front that could benefit from the present front
treatment strategy. There are also issues related to mass conservation and fill-time
errors that might be addressed by introducing suitable projections. The general
question of “rate of convergence” of these schemes requires analysis. Numerical results
here suggest first-order accuracy and are consistent with the approximations made,
but theoretical results are not available yet for these methods.
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